Abstract

Cellulose fibres are prone to flocculate and form aggregates that are deformable by the hydrodynamic stress. In this work I document for coiled pipe flow, known to have secondary motion in the pipe cross-sectional plane, an accumulation of fibre flocs and fibre aggregates at the outer bend. That is the segregation into a section in the pipe cross-section and hence presents a case of angular segregation. The segregation was studied for non-coherent crowded fibre flocs. For that, segregation benefited from fibre concentration and suffered from increased hydrodynamic stress expressed by increasing Reynolds number. Based on the observed segregation of fibres a flow splitter was designed that separated the flow at 1/3 of the tube diameter measured from the inner bend. The outer bend suspension length-weighted fibre length was found to increase. For the best case in this work, the difference between outer and inner bend relative to the feed fibre length was 22%. As for radial and axial segregation, which are known, also angular segregation is fibre-length sensitive. As such it can be exploited for length fractionation of networking and aggregating elongated particles, for example fibres.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.