Abstract

Angular-resolved single-crystal magnetometry is a key tool to characterise lanthanide-based materials with low symmetry, for which conjectures based on idealised geometries can be totally misleading. Unfortunately the technique is strictly successful only for triclinic structures, thus reducing significantly its application. By collecting out-of-equilibrium magnetisation data the technique was extended to the orthorhombic organometallic Cp*ErCOT single-molecule magnet (SMM), thus allowing for the first time the reconstruction of the molecular anisotropy tensor notwithstanding the two molecular orientations in the crystal lattice. The results, flanked by state-of-the-art ab initio calculations, confirmed the expected orientation of the molecular easy axis of magnetisation and thus validated the synthetic strategy based on organometallic complexes of a single lanthanide ion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.