Abstract
We present a scaling law that predicts the values of the stresses obtained in numerical simulations of saturated MRI-driven turbulence in nonstratified shearing boxes. It relates the turbulent stresses to the strength of the vertical magnetic field, the sound speed, the vertical size of the box, and the numerical resolution and predicts accurately the results of 35 numerical simulations performed for a wide variety of physical conditions. We use our result to show that the saturated stresses in simulations with zero net magnetic flux depend linearly on the numerical resolution and would become negligible if the resolution were set equal to the natural dissipation scale in astrophysical disks. We conclude that in order for MRI-driven turbulent angular momentum transport to be able to account for the large value of the effective alpha viscosity inferred observationally, the disk must be threaded by a significant vertical magnetic field and the turbulent magnetic energy must be in near equipartition with the thermal energy. This result has important implications for the spectra of accretion disks and their stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.