Abstract

Context. Asteroseismic studies show that cores of post-main-sequence stars rotate more slowly than theoretically predicted by stellar models with purely hydrodynamical transport processes. Recent studies of main-sequence stars, particularly Gamma Doradus (γ Dor) stars, have revealed the internal rotation rates for hundreds of stars, offering a counterpart on the main sequence for studies of angular momentum transport. Aims. We investigate whether such a disagreement between observed and predicted internal rotation rates is present in main-sequence stars by studying angular momentum transport in γ Dor stars. Furthermore, we test whether models of rotating stars with internal magnetic fields can reproduce their rotational properties. Methods. We computed rotating models with the Geneva stellar evolution code taking into account meridional circulation and shear instability. We also computed models with internal magnetic fields using a general formalism for transport by the Tayler-Spruit dynamo. We then compared these models to observational constraints for γ Dor stars that we compiled from the literature, thus combining the core rotation rates, projected rotational velocities from spectroscopy, and constraints on their fundamental parameters. Results. We show that combining the different observational constraints available for γ Dor stars enable us to clearly distinguish the different scenarios for internal angular momentum transport. Stellar models with purely hydrodynamical processes are in disagreement with the data, whereas models with internal magnetic fields can reproduce both core and surface constraints simultaneously. Conclusions. Similarly to results obtained for subgiant and red giant stars, angular momentum transport in radiative regions of γ Dor stars is highly efficient, in good agreement with predictions of models with internal magnetic fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.