Abstract

Broadband, coherent light carrying optical angular momentum (AM) is of potential utility for a variety of classical and quantum communication applications, but at present few such sources exist. We study the theory of generation of supercontinua in a ring array of coupled optical fibres. Short pulses carrying discrete AM undergo soliton fission, spontaneously breaking azimuthal symmetry. This results in a train of pulses with a broadband frequency spectrum as well as a non-trivial AM distribution. These spatio-temporal solitary waves, localised around a single fibre core, emit an unusual form of resonant radiation which can be present even in the absence of intrinsic higher order dispersion, being induced by the lattice dispersion of the ring array. We explore how the coupling properties between fibre cores affect the resulting supercontinuum, in particular how mildly twisting the array can effectively manipulate its AM content and resonant frequencies through the induced Peierls phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.