Abstract
We compare the specific angular momentum profiles of virialized dark halos in cold dark matter (CDM) and warm dark matter (WDM) models, using high-resolution dissipationless simulations. The simulations were initialized using the same set of modes, except on small scales, where the power was suppressed in WDM below the filtering length. Remarkably, WDM as well as CDM halos are well described by the two-parameter angular momentum profile of Bullock and coworkers, even though the halo masses are below the filtering scale of the WDM. Although the best-fit shape parameters change quantitatively for individual halos in the two simulations, we find no systematic variation in profile shapes as a function of the dark matter type. The scatter in shape parameters is significantly smaller for the WDM halos, suggesting that substructure and/or merging history plays a role in producing scatter about the mean angular momentum distribution, but that the average angular momentum profiles of halos originate from larger scale phenomena or a mechanism associated with the virialization process. The known mismatch between the angular momentum distributions of dark halos and disk galaxies is, therefore, present in WDM as well as CDM models. Our WDM halos tend to have a less coherent (more misaligned) angular momentum structure and smaller spin parameters than do their CDM counterparts, although we caution that this result is based on a small number of halos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.