Abstract

The three families of classical groups of linear transformations (complex, orthogonal, symplectic) give rise to the three great branches of differential geometry (complex analytic, Riemannian and symplectic). Complex analytic geometry derives most of its interest from complex algebraic geometry, while symplectic geometry provides the general framework for Hamiltonian mechanics.These three classical groups “intersect” in the unitary group and the three branches of differential geometry correspondingly “intersect” in Kähler geometry, which includes the study of algebraic varieties in projective space. This is the basic reason why Hodge was successful in applying Riemannian methods to algebraic geometry in his theory of harmonic forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.