Abstract
The work of Carruthers & Nieto on the harmonic oscillator coherent states is combined with Schwinger’s construction of angular momentum to produce the angular momentum coherent states. It is shown that these states become the vector representatives of angular momentum in the classical limit, and so are particularly useful for discussing the transition from quantum to classical angular momentum. The uncertainty relations for angle and angular momentum are described and are compatible with the classical limit. Under rotations the coherent states transform in a manner that in the classical limit is equivalent to the transformation of vectors, and in the same limit the root mean square variation of the expectation values of the components of angular momentum become negligible in comparison with the expectation values themselves. The coupling of two angular momenta in the classical limit is investigated: it is shown that although the product of two coherent states is not itself a coherent state, it does represent a packet similar to a true coherent state, and centred on the direction of the classical resultant of the two component vectors. The properties and implications of hyperbolic angular momentum space are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.