Abstract

Dirac carriers in graphene are commonly characterized by a pseudospin degree of freedom, arising from the degeneracy of the two inequivalent sublattices. The inherent chirality of the quasiparticles leads to a topologically nontrivial band structure, where the in-plane components of sublattice spin and momentum are intertwined. Equivalently, sublattice imbalance is intimately connected with angular momentum, inducing a torque of opposite sign at each Dirac point. In this work we develop an intuitive picture that associates sublattice spin and winding number with angular momentum. We develop a microscopic perturbative model to obtain the finite angular momentum contributions along the main crystallographic directions. Our results can be employed to determine the angular dependence of the $g$ factor and of light absorption in honeycomb bipartite structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.