Abstract
ABSTRACT We introduce a new diagnostic for exploring the link between angular momentum and local gravitational instability in galaxy discs. Our diagnostic incorporates the latest developments in disc instability research, is fully consistent with approximations that are widely used for measuring the stellar specific angular momentum, j⋆ = J⋆/M⋆, and is also very simple. We show that such a disc instability diagnostic hardly correlates with j⋆ or M⋆, and is remarkably constant across spiral galaxies of any given type (Sa–Sd), stellar mass ($M_{\star }=10^{9.5}\mbox{--}10^{11.5}\, \mbox{M}_{\odot }$), and velocity dispersion anisotropy (σ$z$⋆/σR⋆ = 0–1). The fact that M⋆ is tightly correlated with star formation rate, molecular gas mass (Mmol), metallicity (12 + log O/H), and other fundamental galaxy properties thus implies that nearby star-forming spirals self-regulate to a quasi-universal disc stability level. This not only proves the existence of the self-regulation process postulated by several star formation models, but also raises important caveats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Monthly Notices of the Royal Astronomical Society: Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.