Abstract

We investigate the accretion of angular momentum onto a protoplanet system using three-dimensional hydrodynamical simulations. We consider a local region around a protoplanet in a protoplanetary disk with sufficient spatial resolution. We describe the structure of the gas flow onto and around the protoplanet in detail. We find that the gas flows onto the protoplanet system in the vertical direction crossing the shock front near the Hill radius of the protoplanet, which is qualitatively different from the picture established by two-dimensional simulations. The specific angular momentum of the gas accreted by the protoplanet system increases with the protoplanet mass. At Jovian orbit, when the protoplanet mass M_p is M_p 1 M_J. The stronger dependence of the specific angular momentum on the protoplanet mass for M_p < 1 M_J is due to thermal pressure of the gas. The estimated total angular momentum of a system of a gas giant planet and a circumplanetary disk is two-orders of magnitude larger than those of the present gas giant planets in the solar system. A large fraction of the total angular momentum contributes to the formation of the circumplanetary disk. We also discuss the satellite formation from the circumplanetary disk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.