Abstract

Abstract The angular momentum anomalies associated with the Antarctic and Arctic Oscillations are examined in a coupled general circulation model. The size of the global-mean anomaly of the Ω angular momentum is unexpectedly larger than that of the relative angular momentum. The result is a simple consequence of mass conservation. Since the mass anomaly at high latitudes is equal and opposite to that at low latitudes, and since the high-latitude mass anomaly is relatively close to the rotation axis, the global-mean Ω angular momentum is significantly nonzero. Analysis of the meridional mass transport indicates that the Antarctic and Arctic Oscillations are persistent but damped modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call