Abstract
The magnetic properties of ordered hexagonal arrays of Co nanowires (NWs) and nanotubes (NTs) with diameters of 50 nm and interwire/tube distances of 105 nm were studied using first-order reversal curves (FORCs). We report an advanced analysis of angle dependent first-order reversal curves (AFORCs), measured by changing the angle of the applied magnetic field from θ = 0° (parallel to the wire/tube axis) to 90° (perpendicular). This method allowed us to determine the magnetization reversal mode and to retrieve quantitative information on the magnetostatic interactions between NWs and between NTs. In particular, we found a sharp increase in the coercivity distribution of the NT arrays for θ > 70°, which is attributed to a transition between vortex and transverse reversal modes. Local magnetic interactions are found to prevail in the Co NT arrays, steadily increasing from θ = 0° to 90°. However, in the Co NW arrays the mean magnetic interactions decrease as θ increases, going from ones similar to local interactions to ones smaller than them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.