Abstract
We establish a quantization result for the angular part of the energy of solutions to elliptic linear systems of Schrodinger type with antisymmetric potentials in two dimensions. This quantization is a consequence of uniform Lorentz‐Wente type estimates in degenerating annuli. Moreover this result is optimal in the sense that we exhibit a sequence of functions satisfying our hypothesis whose radial part of the energy is not quantized. We derive from this angular quantization the full energy quantization for general critical points to functionals which are conformally invariant or also for pseudoholomorphic curves on degenerating Riemann surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.