Abstract

The angular distribution and the energy spectrum of hot electrons with energy over 50keV emitted from ethanol droplets irradiated by linearly polarized 150 fs laser pulses at the intensity of 10 16W/cm2 have been measured. The angular distribution of hot electrons is found to be dependent on the laser polarization. Two hot electron jets like double leaves symmetrically with respect to the laser propagation direction are observed within the polarization plane. The maximum energy of the hot electrons is found to be more than 750 keV. A model based on the resonance absorption can be used to interpret the above distribution. The calculation agrees well with the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call