Abstract

We investigated the dependences of the critical current density Jc on the magnetic field angle θ in YBa2Cu3O7−δ thin films with the crossed configurations of the columnar defects (CDs). To install the crossed CDs, the films were irradiated using the high energetic Xe ions at two angles relative to the c-axis. The additional peak around the c-axis appears in the Jc(θ) for all irradiated films. In lower magnetic fields, the height of the Jc(θ) peak caused by the crossed CDs with the crossing angles θi=±10° was higher than that for the parallel CDs. It is considered that the correlation of the flux pinning by the crossed CDs along the c-axis occurs even in the case of θi=±25°, which was also suggested by the kink behaviors of the scaling parameters of the current–voltage characteristics near 1/3 of the matching field. In higher magnetic fields, on the other hand, the height and width of the Jc(θ) peak for the crossed CD configurations rapidly reduce with increasing the magnetic field compared to the parallel ones. In the crossed CD configurations, the dispersion in the direction of CDs would prevent the correlation of flux pinning along the c-axis in high magnetic fields, which occurs in the parallel CD configurations due to the collective pinning of flux lines including the interstitial flux lines between the directly pinned flux lines by CDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.