Abstract

Magnetization properties of magnetic nanowire arrays are studied on various ferromagnetic materials grown in anodic alumina (alumite) and track etched polycarbonate (PCTE) membranes by pulsed electrodeposition. Magnetization curves were measured as functions of wire material, field orientation, and wire length. The coercivity (Hc) and remanent squareness (S) of the various wire arrays were derived from hysteresis loops as a function of angle (θ) between the field and wire axis. For PCTE membranes, Hc(θ) curves for CoNiFe, NiFe, and Co nanowire arrays all show an otherwise-bell-type variation, while they change shapes from the otherwise bell to bell type for Ni nanowire arrays as the wire diameter decreases to 30 nm. These characteristics can be understood based on different magnetization reversal mechanisms of small wires. The effect of magnetostatic interaction among wires on the magnetic properties was examined by changing the wire lengths in alumite membranes. It is found that the interaction reduces Hc and S values significantly and may cause the overall easy axis change from parallel to perpendicular to the wire axis. However, the interaction is much weaker than expected from an independent precession theory. The strong coupling among the wire may also induce a change of magnetization reversal mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.