Abstract

Methyl halides have been used to test basis set effects on simulations of strong field ionization using time dependent configuration interaction with an absorbing potential. Standard atom centered basis sets need to be augmented by several sets of diffuse functions on each atom so that the wave function in the strong field can interact with the absorbing potential used to model ionization. An absorbing basis of 3 s functions, 2 p functions, 3 d functions, and 1 f function is sufficient for CH3F. Large absorbing basis sets with 4 s functions, 3 or 4 p functions, 4 or 5 d functions, and 2 f functions are recommended for the heavier halogens. The simulations used static fields in the 0.035-0.07 au range to explore the angular dependence of ionization of methyl halides. CH3F ionizes mainly from the methyl group; CH3Cl and CH3Br show ionization from both the methyl group and the halogen, and CH3I ionizes almost exclusively from the pπ orbitals of the iodine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.