Abstract

Abstract To advance inertial navigation, we present the scheme for a compact quantum sensor which is based on the quantum phenomenon of the angular Bloch oscillations and measuring exclusively the angular acceleration of slow external rotation. We study the dynamics of ultra-cold atoms confined in a toroidal trap with a ring-lattice along the azimuth angle, realized with the superposition of two copropagating Laguerre–Gaussian beams. In the presence of external rotation with a small angular acceleration, or a prescribed linear chirp between the two beams, the measured angular momentum of the trapped atoms exhibits a specific periodic behaviour in time, which we call as the angular Bloch oscillations. This quantum phenomenon is shown to be a key element of fruitful applications for (i) an efficient transfer of quantized angular momentum from the light to the atoms by controlling the chirp, and (ii) the direct determination of the angular acceleration of external rotation by measuring the Bloch period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.