Abstract
Earth and the other rocky bodies that make up the inner solar system are systematically depleted in hydrogen (H) and other cosmochemically volatile elements (e.g., carbon (C), fluorine (F), chlorine (Cl), and thallium (Tl)) relative to primitive undifferentiated meteorites known as carbonaceous chondrites. If we are to understand how and when Earth gained its life-essential elements, it is critical to determine the timing, flux, and nature of the delivery of condensed volatiles into the presumed hot and dry early inner solar system. Here we present evidence preserved in ancient basaltic angrite meteorites for an addition of volatiles to the hot and dry inner solar system within the first two million years of solar system history. Our data demonstrate that the angrite parent body was enriched in highly volatile elements (H, C, F, and Tl) relative to those predicted on the basis of the angrite parent body’s overall volatile depletion trend (e.g., H is enriched by up to a factor of 106). This relative enrichment is best explained by mixing of extremely volatile-depleted material, located well inside the snow line, with volatile-rich material derived from outside the snow line.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.