Abstract

Protein-truncating variants (PTVs) affecting dyslipidemia risk may point to therapeutic targets for cardiometabolic disease. Our objective was to identify PTVs that were associated with both lipid levels and the risk of coronary artery disease (CAD) or type 2 diabetes (T2D) and assess their possible associations with risks of other diseases. To achieve this aim, we leveraged the enrichment of PTVs in the Finnish population and tested the association of low-frequency PTVs in 1,209 genes with serum lipid levels in the Finrisk Study (n = 23,435). We then tested which of the lipid-associated PTVs were also associated with the risks of T2D or CAD, as well as 2,683 disease endpoints curated in the FinnGen Study (n = 218,792). Two PTVs were associated with both lipid levels and the risk of CAD or T2D: triglyceride-lowering variants in ANGPTL8 (-24.0[-30.4 to -16.9] mg/dL per rs760351239-T allele, P = 3.4 × 10−9) and ANGPTL4 (-14.4[-18.6 to -9.8] mg/dL per rs746226153-G allele, P = 4.3 × 10−9). The risk of T2D was lower in carriers of the ANGPTL4 PTV (OR = 0.70[0.60–0.81], P = 2.2 × 10−6) than noncarriers. The odds of CAD were 47% lower in carriers of a PTV in ANGPTL8 (OR = 0.53[0.37–0.76], P = 4.5 × 10−4) than noncarriers. Finally, the phenome-wide scan of the ANGPTL8 PTV showed that the ANGPTL8 PTV carriers were less likely to use statin therapy (68,782 cases, OR = 0.52[0.40–0.68], P = 1.7 × 10−6) compared to noncarriers. Our findings provide genetic evidence of potential long-term efficacy and safety of therapeutic targeting of dyslipidemias.

Highlights

  • Dyslipidemia is a major risk factor for cardiovascular disease and is present in nearly half of type 2 diabetes patients [1]

  • To detect protein-truncating variant (PTV) associated with cardiometabolic disease, we first performed a genome-wide scan of PTVs associated with serum lipid levels in Finns

  • We found PTVs in two genes highly enriched in Finns, which were associated with both serum lipid levels and a lower risk of type 2 diabetes or coronary artery disease: ANGPTL4 and ANGPTL8

Read more

Summary

Introduction

Dyslipidemia is a major risk factor for cardiovascular disease and is present in nearly half of type 2 diabetes patients [1]. There are few alternatives to low-density lipoprotein (LDL) cholesterol-lowering therapy Common, this therapy often fails to treat the condition effectively, leaving patients with high risk of cardiovascular disease [2]. Genome-wide association studies have identified over 200 genetic loci that are related to circulating lipid levels [3,4,5,6] these variants are typically common (minor-allele frequency [MAF] greater than 5%) and are located in the noncoding part of the genome This has made it hard to identify causal genes for blood lipid levels and cardiometabolic disease risk for most genetic regions. These types of studies have not been able to show which genes can be pharmacologically inhibited safely to reduce the risk of type 2 diabetes (T2D) or coronary artery disease (CAD)

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.