Abstract

This research furthers the development of a closed-form solution to the angles-only initial relative orbit determination problem for non-cooperative target close-in proximity operations when the camera offset from the vehicle center-of-mass allows for range observability. In previous work, the solution to this problem had been shown to be non-global optimal in the sense of least square and had only been discussed in the context of Clohessy-Wiltshire. In this paper, the emphasis is placed on developing a more compact and improved solution to the problem by using state augmentation least square method in the context of the Clohessy-Wiltshire and Tschauner-Hempel dynamics, derivation of corresponding error covariance, and performance analysis for typical rendezvous missions. A two-body Monte Carlo simulation system is used to evaluate the performance of the solution. The sensitivity of the solution accuracy to camera offset, observation period, and the number of observations are presented and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.