Abstract

In this paper, a novel angle-based twin parametric-margin support vector machine (ATP-SVM) is proposed, which can efficiently handle heteroscedastic noise. Taking motivation from twin parametric-margin support vector machine (TPMSVM), ATP-SVM determines two nonparallel parametric-margin hyperplanes, such that the angle between their normal is maximized. Unlike TPMSVM, it solves only one modified quadratic programming problem (QPP) with fewer number of representative samples. Further, it avoids the explicit computation of inverse of matrices in the dual and has efficient learning time as compared to other single problem classifiers like nonparallel SVM based on one optimization problem (NSVMOOP).The efficacy of ATP-SVM is tested by conducting experiments on a wide range of benchmark UCI datasets. ATP-SVM is extended for multi-category classification using state-of-the-art one-against-all (OAA) and binary tree (BT) based multi-category classification approaches. This work also proposes the application of ATP-SVM for segmentation of color images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.