Abstract
An angle order is a partially ordered set whose points can be mapped into unbounded angular regions in the plane such that x is less than y in the partial order if and only if x's angular region is properly included in y's. The zero augmentation of a partially ordered set adds one point to the set that is less than all original points. We prove that there are finite angle orders whose augmentations are not angle orders. The proof makes extensive use of Ramsey theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.