Abstract

With the advances of the Internet of Things and mobile connectivity, location-based services are becoming increasingly popular and continue to enhance our experience. Multiple antennas have been pivotal in providing reliable wireless communications and high-resolution localization. If the antennas of the array are isotropic, then the simplified array manifold determined by the array geometry can be used to estimate the angle-of-arrival (AOA). However, in the real world, mobile handsets tend to have very limited space, where the practical antennas are equipped on the same ground plane, and the array geometry hardly obeys the rule of half-wavelength spacing. Therefore, a practical antenna couples signals from other antennas, causing a mutual coupling effect. Complex array manifolds are produced on an antenna even if the received signal is propagated through a single path channel. In addition, the irregular radiation pattern of each antenna further impairs the AOA estimation capability. Given the above effects, the simplified array manifold determined by the array geometry can no longer provide precise localization. In this paper, we propose a generic array manifold model for both isotropic and practical antennas. We also present an efficient algorithm to enable AOA estimation on practical antennas on the basis of the proposed model and implement it on a 5G phone at a mid-band spectrum with a 100MHz channel bandwidth. Results reveal the promising performance of the proposed model, with the AOA estimation errors lower than 10∘ in over 90% of the scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call