Abstract

Contemporary wireless communication transceivers can utilize their multiple antennas to improve positioning abilities. Angle of Arrival (AoA) estimation utilizes shifts in phase between the signal of interest arriving at different receiving antennas. Software Defined Radio (SDR) USRP B210 and GNU Radio implementing the Root Multiple Signal Classification (Root-MUSIC) algorithm are used in this paper. However, this setup requires the consideration of errors caused by hardware and radio environment. The impact of these effects is shown using an analytical model, assessed, mostly by measurements, and relevant solutions are proposed. The hardware distortions are caused mostly by synchronization errors. The intricacies of the most problematic phase synchronization are investigated with the wired setup showing, e.g., changes with frequency or gain. Both synchronizations emitting calibration tone from the same radio front end, resulting in cross-talk, or a separate one are tested. Recommendations enhancing the performance of the system and alleviating hardware imperfections are provided in this paper. The accuracy of AoA estimation is degraded by multipath propagation or radio interference. A signal processing scheme including filtering has been proposed. A set of over-the-air experiments assessed the performance of the system. The presented and publicly available software package, scalable to a higher number of RX antennas, enables straightforward implementation by other researchers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.