Abstract

Plasmonic color filters inherently suffer from angular sensitiveness, which hinder them from practical applications. Here, we present a plasmonic subtractive color filter incorporating two-dimensional randomly distributed silver nanodisks on top of a glass substrate. Due to the elimination of structural periodicity, the proposed plasmonic color filter works via localized surface plasmon resonances (LSPRs) and thus enables excellent angle-insensitive (up to 60°) performance. In addition, uncoupled LSPRs between nanodisks guarantee stability and reproducibility of the color filter. Finally, a palette of colors across the visible region was obtained with the proposed color filters by simply varying the diameter of nanodisks, exhibiting a promising and robust applicability in digital imaging and sensing industries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.