Abstract
Relative doubly differential cross sections for the Penning ionization of H(2) by spin-state-selected metastable He (1s2s) are reported at center-of-mass collision energies E of 3.1 and 4.2 kcal/mol in a crossed supersonic beam experiment employing a rotatable mass spectrometer detector. The measurements are sufficiently dense in velocity space as to avoid having to functionalize the differential cross sections in order to transform the intensities into the c.m. The H(2) (+) product is scattered sharply forward, c.m. Deltatheta<10 degrees half-width at half-maximum, with respect to the incident direction of H(2) at both energies for both spin states. On the average the products have lost energy upon recoil, mean recoil energy E(')<E, and E(')-theta coupling is significant and increasing with E. Extensive comparison is made with infinite-order-sudden quantum scattering calculations based on previous experimental He(*)+H(2) optical potential surfaces and a recent ab initio He+H(2) (+) exit channel surface. Aside from predicted even sharper forward scattering, agreement is fair to good for both spin states. The calculations allow an assessment of the possibility of observing quantum effects in the differential reactive scattering in these systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.