Abstract

In this paper, we consider a downlink orthogonal frequency division multiplexing (OFDM) system from a base station to a high-speed train (HST) equipped with fully/partly calibrated massive uniform linear antenna-array (ULA) in wireless environments with abundant scatterers. Multiple Doppler frequency offsets (DFOs) stemming from intensive propagation paths together with transceiver oscillator frequency offset (OFO) result in a fast time-varying frequency-selective channel. We develop an angle domain carrier frequency offset (CFO, general designation for DFO and OFO) estimation approach. A high-resolution beamforming network is designed to separate different DFOs into a set of parallel branches in angle domain such that each branch is mainly affected by a single dominant DFO. Then, a joint estimation algorithm for both maximum DFO and OFO is developed for fully calibrated ULA. Next, its estimation mean square error (MSE) performance is analyzed under inter-subarray mismatches. To mitigate the detrimental effects of inter-subarray mismatches, we introduce a calibration-oriented beamforming parameter (COBP) and develop the corresponding modified joint estimation algorithm for partly calibrated ULA. Moreover, the Cramer-Rao lower bound of CFO estimation is derived. Both theoretical and numerical results are provided to corroborate the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.