Abstract

We report an anomalous anisotropy in photoluminescence (PL) from crystalline nanobelt of an organic small-molecule semiconductor, 6,13-dichloropentacene (DCP). Large-area well-aligned DCP nanobelt arrays are readily formed by self-assembly through solution method utilizing the strong anisotropic interactions between molecules. The absorption spectrum of the arrays suggests the formation of both intramolecular exciton and intermolecular exciton. However, the results of angle-dependent PL spectroscopy indicate that the PL arises only from the relaxation of intramolecular exciton, which has an optical transition dipole moment with an angle of 115° with the long-axis of the nanobelts. The angular dependence of PL signals follows a quartic rule (IPL(θ) ∝ cos4(θ – 115)) and agrees well with the optical selection rule of individual DCP molecules. The measured polarization ratio ρ from the individual nanobelts is on average 0.91 ± 0.02, superior to that of prior-art organic semiconductors. These results provide new insights into exciton behavior in 1D π–π stacking organic semiconductors and demonstrate DCP’s great potential in the photodetectors and optical switches for large-scale organic optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.