Abstract
ABSTRACTSilica aggregate formation was studied in 1D premixed methane/hexamethyldisiloxane/air flames by angle-dependent light scattering measurements for various siloxane concentrations, flame temperatures, and equivalence ratios, using Guinier analysis to interpret the experimental data. A sublinear dependence of the aggregate radii of gyration of generated silica particles on residence time, and non-monotonic dependence on flame temperature with a maximum around 2000 K have been observed, with radii of gyration in the range of 10 to 120 nm. Furthermore, a lean flame environment appears to foster aggregate growth compared to rich and stoichiometric flames, in which growth is very similar. When fixing the initial conditions at the residence time corresponding to the first measurement point, a simple model describing particle evolution as a result of collisional growth and sintering predicts well the functional dependence of the growth of particle radii.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.