Abstract

We propose an axisymmetric angle-dependent gap (ADG) state with the broken rotational symmetry in isospin-asymmetric nuclear matter. In this state, the deformed Fermi spheres of neutrons and protons increase the pairing probabilities along the axis of symmetry breaking near the average Fermi surface. We find that the state possesses lower free energy and larger gap value than the angle-averaged gap state at large isospin asymmetries. These properties are mainly caused by the coupling of different m_{j} components of the pairing gap. Furthermore, we find the transition from the ADG state to the normal state is of second order and the ADG state vanishes at the critical isospin asymmetry m_{j} where the angle-averaged gap vanishes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.