Abstract

Transverse (2D) photoelectron velocity distributions are directly measured on 10 nm Au film and single Au nanoshells following multiphoton excitation/photoemission. This unique capability is achieved by combining scanning photoemission microscopy with velocity map imaging, yielding photoelectron spectra as a function of diffraction-limited position on a sample. Detailed 3D photoelectron velocity distributions are retrieved for Au film by fitting the 2D data with a ballistic (three-step) photoemission model, where contributions from two-photon, three-photon, and d-band processes are identified and further characterized as a function of photon energy using a broadly tunable, visible femtosecond optical parametric oscillator. These techniques are further applied to investigate the more complex behaviors of single plasmonic Au nanoshells with silica cores. The strong plasmonic near- and far-field signatures are first characterized via optical and photoemission measurements, along with theoretical methods (Mie...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.