Abstract

Accumulating evidence suggests that the protective pathways of the renin-angiotensin system are enhanced in women, including the angiotensin type 2 receptor (AT2R), which mediates vasodilatory and natriuretic effects. To provide insight into the sex-specific ability of pharmacological AT2R stimulation to modulate renal function in hypertension, we examined the influence of the AT2R agonist, compound 21 (100-300 ng/kg per minute), on renal function in 18- to 19-week-old anesthetized male and female spontaneously hypertensive rats. AT2R stimulation significantly increased renal blood flow in female hypertensive rats (PTreatment<0.001), without influencing arterial pressure. For example, at 300 ng/kg per minute of compound 21, renal blood flow increased by 14.3±1.8% from baseline. Furthermore, at 300 ng/kg per minute of compound 21, a significant increase in urinary sodium excretion was observed in female hypertensive rats (+180±59% from baseline; P<0.05 versus vehicle-treated rats). This was seen in the absence of any major change in glomerular filtration rate, indicating that the natriuretic effects of AT2R stimulation were likely the result of altered renal tubular function. Conversely, we did not observe any significant effect of AT2R stimulation on renal hemodynamic or excretory function in male hypertensive rats. Finally, gene expression studies confirmed greater renal AT2R expression in female than in male hypertensive rats. Taken together, acute AT2R stimulation enhanced renal vasodilatation and sodium excretion without concomitant alterations in glomerular filtration rate in female hypertensive rats. Chronic studies of AT2R agonist therapy on renal function and arterial pressure in hypertensive states are now required to establish the suitability of AT2R as a therapeutic target for cardiovascular disease, particularly in women.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.