Abstract

Ventricular arrhythmias are considered as a major risk of sudden cardiac death. This study was designed to investigate the potential effects of angiotensin receptor neprilysin inhibitor; thiorphan/irbesartan (TH/IRB) combination therapy on myocardial ischemic-reperfusion (I/R)-induced arrhythmia. Fifty male Wistar rats were divided into 5 groups; (I, II): Sham, I/R both received DMSO intraperitoneally before the procedure. (III, IV, V): TH/IRB + IR (0.1/5 mg/kg, 0.1/10 mg/kg and 0.1/15 mg/kg). The drugs were injected intraperitoneally 15 min before I/R induction. Electrocardiograms changes, mean arterial blood pressure, incidence of ventricular tachycardia (VT), incidence of ventricular fibrillation (VF) and arrhythmia score were assessed. Cardiac levels of creatinine kinase–MB (CK-MB), Malondialdehyde (MDA), superoxide dismutase (SOD), endothelin-1 (ET-1), ATP content, and Na+/K+-ATPase pump activity were measured. TH (0.1 mg/kg) in combination with IRB (5, 10 and 15 mg/kg) produced significant decrease in QTc interval duration, ST height, incidence of VT and VF, duration of VT + VF, and arrhythmia score compared to I/R group. All treated groups showed significant decrease in the cardiac levels of: CK-MB, MDA and ET-1 and significant increase in SOD, ATP content, and Na+/K+-ATPase pump activity compared to I/R. TH/IRB + IR (0.1/10 mg/kg) group produced significant decrease in CK-MB, MDA and ET-1 and a significant increase in SOD, ATP content, and Na+/K+-ATPase pump activity compared to other treated groups. In conclusion, angiotensin receptor neprilysin inhibitor (thiorphan/irbesartan) decreased arrhythmia score and decreased cardiac damage. These could be explained in part by its ability to decrease oxidative stress and ET-1, increase ATP, and Na+/K+-ATPase pump activity in this rat model of I/R-induced arrhythmia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.