Abstract

The embryonic development of mammalian kidneys is completed during the perinatal period with a dramatic increase in urine production, as the burden of eliminating nitrogenous metabolic waste shifts from the placenta to the kidney. This urine is normally removed by peristaltic contraction of the renal pelvis, a smooth muscle structure unique to placental mammals. Mutant mice completely lacking angiotensin type 1 receptor genes do not develop a renal pelvis, resulting in the buildup of urine and progressive kidney damage. In mutants the ureteral smooth muscle layer is hypoplastic and lacks peristaltic movements. We show that angiotensin can induce the ureteral smooth muscles in organ cultures of wild-type, but not mutant, ureteral tissues and that, in wild-type mice, expression of both renal angiotensin and the receptor are transiently upregulated at the renal outlet at birth. These results reveal a new role for angiotensin in the unique cellular adaptations of the mammalian kidney to the physiological stresses of postnatal life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.