Abstract
In vascular smooth muscle, stimulation of heterotrimeric G protein-coupled receptors (GPCRs) by various contractile agonists activates intracellular signaling molecules to result in an increase in cytosolic Ca2+ and the subsequent phosphorylation of myosin light chain (MLC) by Ca2+/calmodulin-dependent MLC kinase. In addition, a portion of agonist-induced contraction is partially mediated by the Ca2+-independent activation of the small G protein RhoA and a downstream target, Rho-kinase. The activation of RhoA is controlled by several regulatory proteins, including guanine nucleotide exchange factors (GEFs). GEFs activate RhoA by promoting the release of GDP and then facilitating the binding of GTP. There are three Rho-specific GEFs (RhoGEFs) in vascular smooth muscle that contain a binding domain [regulator of G protein signaling (RGS) domain] capable of linking GPCRs to RhoA activation: PDZ-RhoGEF, leukemia-associated RhoGEF (LARG), and p115RhoGEF. We hypothesized that RGS domain-containing RhoGEFs, especially LARG, participate in linking GPCR to RhoA activation in vascular smooth muscle. We observed that angiotensin II up-regulates LARG via the AT1 receptor, and this up-regulation is signaled via the phosphatidylinositol 3-kinase pathway. Furthermore, angiotensin II treatment caused a small, but significant, increase in the component of contractile responses sensitive to Rho-kinase antagonism. These observations support the hypothesis that RhoGEFs, particularly LARG, participate in linking GPCR to RhoA activation in vascular smooth muscle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.