Abstract

Angiotensin II type 2 (AT2) receptor stimulation could exert beneficial effects on vascular remodeling. Previously, we reported that AT2 receptor stimulation ameliorated insulin resistance in diabetic mice accompanied by PPARγ activation which also plays a variety of crucial roles in the vasculature. Therefore, this study aimed to investigate the vascular protective effect of the AT2 receptor with activation of PPARγ involving AT2 receptor-interacting protein (ATIP). Vascular injury was induced by polyethylene-cuff placement around the femoral artery in C57BL/6J mice. Treatment with compound 21 (C21), an AT2 receptor agonist, decreased neointimal formation, cell proliferation, and the mRNA levels of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF)-α, and interleukin-1β, and phosphorylation of nuclear factor-kappa B, and increased PPARγ DNA-binding activity in the injured artery, whereas these inhibitory effects of C21 were attenuated by co-treatment with a PPARγ antagonist, GW9662. Treatment of vascular smooth muscle cells (VSMC) with C21 prepared from smAT2 transgenic mice, which highly express the AT2 receptor in VSMC, increased both PPARγ activity and its DNA-binding activity determined by dual-luciferase assay and electrophoresis mobility shift assay (EMSA), respectively. We observed that ATIP was involved in PPARγ complex formation, and that transfection of siRNA of ATIP1 attenuated the AT2 receptor-mediated increase in PPARγ activity in VSMC. In response to AT2 receptor stimulation, ATIP was translocated from the plasma membrane to the nucleus. Our results suggest a new mechanism by which AT2 receptor stimulation activates PPARγ, thereby resulting in amelioration of vascular intimal proliferation, and that ATIP plays an important role in AT2 receptor-mediated PPARγ activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call