Abstract

The Na+/H+ antiport and Na(+)-HCO3- coinflux carrier contribute to recovery from intracellular acidosis in cardiac tissue. The effects of angiotensin II (10(-12)-10(-6) M) on H+ fluxes after intracellular acid loading and during reperfusion after myocardial ischemia have been investigated in the isovolumic, Langendorff-perfused ferret heart. Intracellular pH (pHi) was estimated using 31P nuclear magnetic resonance (NMR) spectroscopy from the chemical shift of intracellular deoxyglucose-6-phosphate or inorganic phosphate. Angiotensin II produced concentration-dependent stimulation (maximum at 10(-6) M: 67%) of 5-(N-ethyl-N-isopropyl)amiloride (EIPA)-sensitive Na(+)-dependent of H+ efflux consistent with stimulation of the Na+/H+ antiport. Half-maximal stimulation of H+ efflux occurred at approximately 10(-9) M, which is close to the dissociation constant of the cardiac angiotensin AT1 receptor. Stimulation via this receptor was confirmed with the nonpeptide AT1 receptor blocker, GR-117289. Angiotensin II had less pronounced effects on HCO3(-)-dependent pHi recovery after acid loading with no effect on pHi recovery after intracellular alkalosis. During reperfusion, angiotensin II significantly increased H+ extrusion but impaired contractile recovery. The results support the hypothesis that angiotensin II facilitates H+ extrusion in the heart. This may help maintain physiological homeostasis, but the hypothesized obligated Na+ influx could exacerbate cellular dysfunction during reperfusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.