Abstract

Accumulating evidence strongly implicates angiotensin II (AngII) intracellular signaling in mediating cardiovascular diseases such as hypertension, atherosclerosis and restenosis after vascular injury. In vascular smooth muscle cells (VSMCs), through its G-protein-coupled AngII Type 1 receptor (AT(1)), AngII activates various intracellular protein kinases, such as receptor or non-receptor tyrosine kinases, which includes epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), c-Src, PYK2, FAK, JAK2. In addition, AngII activates serine/threonine kinases such as mitogen-activated protein kinase (MAPK) family, p70 S6 kinase, Akt/protein kinase B and various protein kinase C isoforms. In VSMCs, AngII also induces the generation of intracellular reactive oxygen species (ROS), which play critical roles in activation and modulation of above signal transduction. Less is known about endothelial cell (EC) AngII signaling than VSMCs, however, recent studies suggest that endothelial AngII signaling negatively regulates the nitric oxide (NO) signaling pathway and thereby induces endothelial dysfunction. Moreover, in both VSMCs and ECs, AngII signaling cross-talk with insulin signaling might be involved in insulin resistance, an important risk factor in the development of cardiovascular diseases. In fact, clinical and pharmacological studies showed that AngII infusion induces insulin resistance and AngII converting enzyme inhibitors and AT(1) receptor blockers improve insulin sensitivity. In this review, we focus on the recent findings that suggest the existence of novel signaling mechanisms whereby AngII mediates processes, such as activation of receptor or non-receptor tyrosine kinases and ROS, as well as cross-talk between insulin and NO signal transduction in VSMCs and ECs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call