Abstract

We tested the hypothesis that angiotensin II (ANG II) contributes to ventilatory and acid-base adaptations during 3-4 h of hypoxia (partial pressure of O2 in arterial blood approximately 43 Torr) in the conscious dog. Three protocols were carried out over 3-4 h in five dogs: 1) air control, 2) 12% O2 breathing, and 3) 12% O2 breathing with ANG II receptors blocked by infusion of saralasin (0. 5 microg . kg-1 . min-1). After 2 h of hypoxia, expired ventilation and alveolar ventilation progressively increased, and the partial pressure of CO2 in arterial blood and the difference between the arterial concentrations of strong cations and strong anions ([SID]) decreased. When the hypoxic chemoreceptor drive to breathe was abolished transiently for 30 s with 100% O2, the resultant central apneic time decreased between 0.5 and 2.5 h of hypoxia. All these adaptive responses to hypoxia were abolished by ANG II receptor block. Because plasma ANG II levels were lower during hypoxia and hypoxic release of arginine vasopressin from the pituitary into the plasma was prevented by ANG II receptor block, the brain renin-angiotensin system was likely involved. It is possible that ANG II mediates ventilatory and acid-base adaptive responses to prolonged hypoxia via alterations in ion transport to decrease [SID] in brain extracellular fluid rather than acting by a direct neural mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.