Abstract
AimsRemodelling of the extracellular matrix (ECM) plays an important role in the production of arrhythmogenic substrate for atrial fibrillation (AF), and is considered to be promoted by the connective tissue growth factor (CTGF). Our objective was to assess the relationship between CTGF and ECM synthesis, and the effect of olmesartan on these processes.Methods and resultsFifteen canine AF models were produced by rapid atrial stimulation. They were divided into three groups: pacing control (n = 5): 6-week pacing, pacing + olmesartan (n = 5): pacing with olmesartan (2 mg/kg/day), and non-pacing group (n = 5). In the pacing control group, messenger ribonucleic acid expressions of CTGF and collagen types 1 and 3 were up-regulated in comparison with the non-pacing group (P < 0.05) while transforming growth factor-β (TGF-β) did not exhibit a significant difference. In the pacing + olmesartan group, these up-regulations were suppressed (P < 0.05). In fluorescent immunostaining, the expression of CTGF was localized in the cytoplasm. The protein level of collagen type 3 was increased in the pacing control and it was suppressed in the pacing + olmesartan group.ConclusionsCTGF and associated genes were up-regulated in the atria with the appearance of fibrosis. Because this up-regulation was independent of TGF-β and suppressed by olmesartan, CTGF up-regulation was considered to be mediated by angiotensin II.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.