Abstract

Chronic hypertension increases the risk of vascular cognitive impairment (VCI) by ∼60%; however, how hypertension affects the vasculature of the hippocampus remains unclear but could contribute to VCI. Memory, hippocampal perfusion, and hippocampal arteriole (HA) function were investigated in male Wistar rats or spontaneously hypertensive rats (SHR) in early (4 to 5months old), mid (8 to 9months old), or late adulthood (14 to 15months old). SHR in late adulthood were chronically treated with captopril (angiotensin converting enzyme inhibitor) or apocynin (antioxidant) to investigate the mechanisms by which hypertension contributes to VCI. Impaired memory in SHR in late adulthood was associated with HA endothelial dysfunction, hyperconstriction, and ∼50% reduction in hippocampal blood flow. Captopril, but not apocynin, improved HA function, restored perfusion, and rescued memory function in aged SHR. Hippocampal vascular dysfunction contributes to hypertension-induced memory decline through angiotensin II signaling, highlighting the therapeutic potential of HAs in protecting neurocognitive health later in life. Vascular dysfunction in the hippocampus contributes to vascular cognitive impairment. Memory declines with age during chronic hypertension. Angiotensin II causes endothelial dysfunction in the hippocampus in hypertension. Angiotensin II-mediated hippocampal arteriole dysfunction reduces blood flow. Vascular dysfunction in the hippocampus impairs perfusion and memory function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call