Abstract

Angiotensin II (ANG II) is a major regulator of blood pressure that essentially acts through activation of ANG II type 1 receptor (AT1R) of vascular smooth muscle cells (VSMC). AT1R activates numerous intracellular signaling pathways, including the small G protein RhoA known to control several VSMC functions. Nevertheless, the mechanisms leading to RhoA activation by AT1R are unknown. RhoA activation can result from activation of RhoA exchange factor and/or inhibition of Rho GTPase-activating protein (GAP). Here we hypothesize that a RhoGAP could participate to RhoA activation induced by ANG II in rat aortic VSMC. The knockdown of the RhoGAP p190A by small interfering RNA (siRNA) abolishes the activation of RhoA-Rho kinase pathway induced after 5 min of ANG II (0.1 microM) stimulation in rat aortic VSMC. We then show that AT1R activation induces p190A dephosphorylation and inactivation. In addition, expression of catalytically inactive or phosphoresistant p190A mutants increases the basal activity of RhoA-Rho kinase pathway, whereas phosphomimetic mutant inhibits early RhoA activation by ANG II. Using siRNA and mutant overexpression, we then demonstrate that the tyrosine phosphatase SHP2 is necessary for 1) maintaining p190A basally phosphorylated and activated by the tyrosine kinase c-Abl, and 2) inducing p190A dephosphorylation and RhoA activation in response to AT1R activation. Our work then defines p190A as a new mediator of RhoA activation by ANG II in VSMC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.