Abstract

Angiotensin II (Ang II) induces angiogenesis by stimulating reactive oxygen species-dependent vascular endothelial growth factor (VEGF) expression. Ang II via type 1 receptor upregulates the expression of LOX-1, a lectin-like receptor for oxidized low-density lipoprotein. LOX-1 activation, in turn, upregulates Ang II type 1 receptor expression. We postulated that interruption of the feedback loop between Ang II and LOX-1 might attenuate Ang II-induced VEGF expression and capillary formation. In vitro experiments showed that Ang II (1 nmol/L) induced the expression of LOX-1 and VEGF and enhanced capillary formation from human coronary endothelial cells in Matrigel assay. Ang II-mediated expression of LOX-1 and VEGF, capillary formation, intracellular reactive oxygen species generation, and phosphorylation of p38 as well as p44/42 mitogen-activated protein kinases, were suppressed by anti-LOX-1 antibody, nicotinamide-adenine dinucleotide phosphate oxidase inhibitor apocynin and the Ang II type 1 receptor blocker losartan, but not by the Ang II type 2 receptor blocker PD123319. Expression of VEGF and capillary formation induced by Ang II were also inhibited by the p44/42 mitogen-activated protein kinase inhibitor U0126 and the p38 mitogen-activated protein kinase inhibitor SB203580. In ex vivo experiments, Ang II stimulated capillary sprouting from aortic rings from wild-type mice, and this phenomenon was significantly attenuated by pretreatment of aortic rings with anti-LOX-1 antibody, apocynin, and losartan, but not by PD123319. Importantly, Ang II-induced capillary sprouting was minimal from aortic rings from LOX-1 null mice compared with wild-type mice. These findings suggest that small concentrations of Ang II promote capillary formation by inducing the expression of VEGF via Ang II type 1 receptor/LOX-1-mediated stimulation of the reactive oxygen species-mitogen-activated protein kinase pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.