Abstract

Angiotensin II (Ang II), through its specific signaling cascades, exerts multiple effects on vascular smooth muscle cells (SMCs). It has been shown that Ang II stimulates activation of protein kinase D (PKD), a member of a new class of serine-threonine kinases. However, little is known regarding the upstream cascade of the intracellular signaling that leads to PKD activation. In the present study, we investigated upstream molecules that mediate Ang II-induced PKD activation in SMCs. Protein kinase C (PKC) inhibitors completely block Ang II-induced PKD activation, and pretreatment with phorbol 12,13-dibutyrate downregulates Ang II-induced PKD activation, indicating that classical or novel isoforms of PKC mediate Ang II-induced PKD activation. Furthermore, the finding that rottlerin, a PKCdelta-specific inhibitor, blocks PKD activation suggests that PKCdelta, a member of novel PKCs, mediates Ang II-induced PKD activation. By using dominant-negative approaches, our results demonstrate that expression of the dominant-negative PKCdelta, but neither the dominant-negative form of PKCepsilon nor PKCzeta, inhibits PKD activation. These results further substantiate the finding that Ang II-induced PKD activation is mediated by PKCdelta. Moreover, using selective Ang II receptor antagonists, our data show that the Ang II type 1 (AT1) receptor but not the AT2 mediates Ang II-stimulated PKD activation. This study reveals for the first time that Ang II-induced PKD activation is mediated via AT1 and regulated by PKCdelta in living cells. These data may provide new insights into molecular mechanisms involved in Ang II-induced physiological and pathological events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.