Abstract
In cultured vascular smooth-muscle cells (VSMC), angiotensin II (AngII) induces a biphasic, sustained increase in diacylglycerol (DG) of unclear origin. To determine whether hydrolysis of phosphatidylcholine (PC) is a possible source of DG, we labelled cellular PC with [3H]choline, and measured the formation of intra- and extra-cellular [3H]choline and [3H]phosphocholine after stimulation with AngII. AngII induced a concentration-dependent release of choline from VSMC that was significant at 2 min and was sustained over 20 min. In contrast, accumulation of choline inside the cells was very slight. AngII also increased the formation of [3H]myristate-labelled phosphatidic acid, and, in the presence of ethanol, of [3H]phosphatidylethanol, characteristic of a phospholipase D (PLD) activity. Extracellular release of choline was partially inhibited by removal of extracellular Ca2+ (54 +/- 9% inhibition at 10 min) or inhibition of receptor processing by phenylarsine oxide (79 +/- 8% inhibition at 20 min). The protein kinase C activator phorbol myristate acetate also stimulated a large release of choline after a 5 min lag, which was unaffected by the Ca2+ ionophore ionomycin, but was additive with AngII stimulation. Down-regulation of protein kinase C by a 24 h incubation with phorbol dibutyrate (200 nM) decreased basal choline release, but had no effect on AngII stimulation. We conclude that AngII induces a major PC hydrolysis, probably mainly via PLD activation. This reaction is partially dependent on Ca2+ and is independent of protein kinase C, and appears to be mediated by cellular processing of the receptor-agonist complex. Our results are consistent with a preferential hydrolysis of PC from the external leaflet of the plasmalemma, and raise the possibility that PC hydrolysis occurs in specialized 'signalling domains' in VSMC.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.