Abstract

Angiotensin-converting enzyme (ACE) inhibitors (I) have beneficial effects that are presumably mediated by decreased angiotensin II (ANG II) production. However, in vitro assays in human heart extracts have demonstrated that > 75% of ANG II-forming enzyme activity was not inhibited by captopril (Cap) and therefore did not appear to be related to ACE but was inhibited by chymostatin, suggesting that it was predominantly chymase-like activity. Previous work in our laboratory has demonstrated a similar relative contribution of ACE and chymase-like activity toward ANG II formation in vitro in dog heart tissue extracts. Accordingly, we compared Cap-inhibitable ANG II formation in vitro in heart tissue of five adult mongrel dogs to the in vivo Cap-inhibitable, ANG II-forming activity across the myocardial bed in four openchest, adult mongrel dogs. In vitro studies demonstrated that only 6 +/- 2% of ANG II formation was inhibited by Cap from heart tissue extracts of the left ventricular midwall. In in vivo studies, ANG I (0.5 nmol/min) followed by ANG I plus the ACE inhibitor Cap (0.1 mumol/min) was infused into the left anterior descending artery, and ANG II was assayed in the proximal aorta and coronary sinus. The arterial-venous (A-V) difference of ANG II across the myocardial circulation increased significantly during ANG I infusion (-13.4 +/- 23.5 to 142.8 +/- 71.4 pg/ml; P < 0.03). Subsequent coinfusion of Cap with ANG I significantly decreased the myocardial A-V difference of ANG II by 60 +/- 18% (P < 0.05). Thus, in contrast to the in vitro situation, ANG II formation in vivo is inhibited significantly by Cap in the normal dog heart. This comparison of in vivo and in vitro conversion of ANG I to ANG II by ACE and chymase-like activity suggests that in vitro assays may underestimate the functional contribution of ACE to intracardiac ANG II formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.