Abstract
The sympathoadrenal response to stress includes a profound increase in adrenomedullary catecholamine synthesis driven by stimulation of tyrosine hydroxylase (TH) transcription. We studied the role of Angiotensin II type 1 and 2 (AT(1) and AT(2)) receptors during isolation stress, and under basal conditions. Pretreatment of rats with the AT(1) receptor antagonist candesartan for 14 days prior to isolation completely prevented the stress-induced stimulation of catecholamine synthesis, decreasing tyrosine hydroxylase transcription by preventing the expression of the transcriptional factor, Fos-related antigen 2 (Fra-2). In addition, AT(1) receptor antagonism prevented the stress-induced increase in adrenomedullary AT(2) receptor binding and protein. Treatment of non-stressed, grouped animals under basal conditions with the AT(1) receptor or with PD 123319, an AT(2) receptor antagonist, decreased the adrenomedullary norepinephrine (NE) content and TH transcription. While AT(1) receptor antagonism decreased the levels of Fra-2 and the phosphorylated forms of cAMP responsive element binding protein (pCREB) and EKR2 (p-ERK2, phosphor-p42 MAP kinase), the AT(2) antagonist decreased Fra-2 with no change in the phosphorylation of CREB or EKR2. Our results demonstrate that both adrenomedullary AT(1) and AT(2) receptor types maintain and promote the adrenomedullary catecholamine synthesis and the transcriptional regulation of TH. Instead of opposing effects, however, our results indicate a complex synergistic regulation between the AT(1) and AT(2) receptor types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.