Abstract

Angiotensin II (AngII) is a circulating peptide that produces a positive inotropic effect in the heart in several species, including humans. The subcellular mechanisms involved in producing this effect have been the focus of numerous studies; however, the results of these studies have generated considerable controversy. Although part of the controversy might arise from species and developmental differences, conflicting results have also been reported in the same species. To further complicate the understanding of the cardiac actions of AngII, the binding of the peptide to its transmembrane G-protein-coupled receptors has been shown to activate signalling cascades that involve numerous second messengers. Among these, inositol 1,4,5-triphosphate (IP 3) and protein kinase C (PKC) have been shown to have the potential to modulate either one or both of the two basic mechanisms known to increase contractility: (i) an increase in the intracellular Ca 2+ concentration ([Ca 2+] i); or (ii) an increase in myofilament responsiveness to Ca 2+. The aim of this review is to examine the effect of AngII on the fundamental components of cardiac excitation-contraction coupling: calcium currents, Na + Ca 2+ exchange, sarcoplasmic reticulum (SR)-CaZ+ release, calcium transients and contractile proteins. An answer to the following question is sought: Is the positive inotropic effect of AngII due to an increase in [Ca 2+] i, to an increase in myofilament responsiveness to Ca 2+, or to both?

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.